EEG of game players - detecting involvement with and without ICA preprocessing
نویسندگان
چکیده
The aim of this paper is to analyze the differences in the classification accuracy obtained with raw EEG data and with data preprocessed with Independent Components Analysis (ICA). Our main research question is whether ICA is able to improve the classification accuracy not only in the case of a multichannel recording but also when EEG data are recorded only from a few channels. In order to answer this question we performed an experiment with 6 game players and gathered EEG data during Dota 2 game session. We analyzed the EEG data separately for 19, 7, and 3 channels with and without ICA preprocessing. With all three number of channels and for each of the six players we obtained more precise classifiers, classifying the seconds of the game as involving or boring, after applying ICA (mean accuracy averaged over subjects: 19 channels 0.87 (raw signals), 0.91 (after ICA); 7 channels 0.8 (raw signals), 0.85 (after ICA); 3 channels 0.75 (raw signals), 0.8 (after ICA)). Streszczenie. Celem artykułu jest analiza różnic w dokładności klasyfikacji otrzymanej przy wykorzystaniu surowego sygnału EEG oraz sygnału poddanego preprocessingowi z wykorzystaniem analizy składowych niezależnych (ICA). Naszym głównym pytaniem badawczym jest to, czy ICA jest w stanie zwiększyć dokładność klasyfikacji nie tylko w przypadku wielokanałowego EEG, ale również wtedy, kiedy dane EEG są nagrywane tylko z kilku kanałów. W celu udzielenia odpowiedzi na to pytanie przeprowadziliśmy eksperyment z sześcioma graczami i zgromadziliśmy dane EEG podczas gry w grę Dota 2. Przeanalizowaliśmy dane oddzielnie dla 19, 7 i 3 kanałów z oraz bez zastosowania algorytmu ICA. Dla wszystkich trzech liczb kanałów i dla każdego z sześciu graczy otrzymaliśmy bardziej dokładne klasyfikatory, dokonujące klasyfikacji poszczególnych sekund gry jako angażujących i nudnych, po przeprowadzeniu preprocessingu z wykorzystaniem ICA (średnia dokładność dla wszystkich podmiotów: 19 kanałów 0.87 (surowe sygnały), 0.91 (po ICA); 7 kanałów 0.8 (surowe sygnały), 0.85 (po ICA); 3 kanały 0.75 (surowe sygnały), 0.8 (po ICA)). (EEG graczy – detekcja zaangażowania z i bez wstępnego przetworzenia sygnału przy pomocy ICA).
منابع مشابه
Factor Analysis Preprocessing for Ica
One of the reasons ICA (Independent Component Analysis) became so popular is that ICA is a promising tools for a lot of applications. One of the attractive applications is the biological data analysis. There are a lot of works on neurobiological data analysis such as EEG (Electroencephalography), fMRI (functional Magnetic Resonance Imaging), and MEG (Magnetoencephalography), and they show inter...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملThe Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers
Introduction: Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Methods: Thirty two subj...
متن کاملICA and Committee Machine-Based Algorithm for Cursor Control in a BCI System
In recent years, brain-computer interface (BCI) technology has emerged very rapidly. Brain-computer interfaces (BCIs) bring us a new communication interface technology which can translate brain activities into control signals of devices like computers, robots. The preprocessing of electroencephalographic (EEG) signal and translation algorithms play an important role in EEG-based BCIs. In this s...
متن کاملICA for noisy neurobiological
ICA (Independent Component Analysis) is a new technique for analyzing multi-variant data. Lots of results are reported in the eld of neurobiological data analysis such as EEG (Electroencephalography), MRI (Magnetic Resonance Imaging), and MEG (Magnetoencephalography) using ICA. But there still remain problems. In most of the neurobiological data, there are a large amount of noise, and the numbe...
متن کامل